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Phase space can be constructed for N equal and distinguishable
subsystems that could be probabilistically either weakly correlated
or strongly correlated. If they are locally correlated, we expect the
Boltzmann–Gibbs entropy SBG � �k �i pi ln pi to be extensive, i.e.,
SBG(N) � N for N3 �. In particular, if they are independent, SBG is
strictly additive, i.e., SBG(N) � NSBG(1), �N. However, if the sub-
systems are globally correlated, we expect, for a vast class of
systems, the entropy Sq � k[1 � �i pi

q]�(q � 1) (with S1 � SBG) for
some special value of q � 1 to be the one which is extensive [i.e.,
Sq(N) � N for N3�]. Another concept which is relevant is strict or
asymptotic scale-freedom (or scale-invariance), defined as the
situation for which all marginal probabilities of the N-system
coincide or asymptotically approach (for N 3 �) the joint proba-
bilities of the (N � 1)-system. If each subsystem is a binary one,
scale-freedom is guaranteed by what we hereafter refer to as the
Leibnitz rule, i.e., the sum of two successive joint probabilities of
the N-system coincides or asymptotically approaches the corre-
sponding joint probability of the (N � 1)-system. The kinds of
interplay of these various concepts are illustrated in several ex-
amples. One of them justifies the title of this paper. We conjecture
that these mechanisms are deeply related to the very frequent
emergence, in natural and artificial complex systems, of scale-free
structures and to their connections with nonextensive statistical
mechanics. Summarizing, we have shown that, for asymptotically
scale-invariant systems, it is Sq with q � 1, and not SBG, the entropy
which matches standard, clausius-like, prescriptions of classical
thermodynamics.

The entropy Sq (1) is defined through§¶

Sq � k
1 � �

i�1

W pi
q

q � 1
�q � R; S1 � SBG � �k �

i�1

W

pi ln pi� ,

[1]

where k is a positive constant (k � 1 from now on) and BG stands
for Boltzmann–Gibbs. This expression is the basis of nonextensive
statistical mechanics (16–18) (see http:��tsallis.cat.cbpf.br�
biblio.htm for a regularly updated bibliography), a current gener-
alization of BG statistical mechanics. For q � 1, Sq is nonadditive
(hence nonextensive) in the sense that for a system composed of
(probabilistically) independent subsystems, the total entropy differs
from the sum of the entropies of the subsystems. However, the
system may have special probability correlations between the
subsystems such that extensivity is valid, not for SBG, but for Sq with
a particular value of the index q � 1. In this paper, we address the
case where the subsystems are all equal and distinguishable. Their
correlations may exhibit a kind of scale-invariance. We may regard
some of the situations of correlated probabilities as related to the
remark (see refs. 19–23 and references therein) that Sq for q � 1 can
be appropriate for nonlinear dynamical systems that have phase
space unevenly occupied. We return to this point later.

We shall consider two types of models. The first one involves N
binary variables (N � 1, 2, 3, . . .), and the second one involves N

continuous variables (N � 1, 2, 3). In both cases, certain correlations
that are scale-invariant in a suitable limit can create an intrinsically
inhomogeneous occupation of phase space. Such systems are
strongly reminiscent of the so called scale-free networks (24, 25),
with their hierarchically structured hubs and spokes and their nearly
forbidden regions.

Discrete Models
Some Basic Concepts. The most general probabilistic sets for N equal
and distinguishable binary subsystems are given in Fig. 1 with

�
n�0

N N!
�N � n�!

�N,n � 1

��N,n � �0, 1	; N � 1, 2, 3, . . . ; n � 0, 1, . . . , N�. [2]

Let us from now on call Leibnitz rule the following recursive
relation:

�N,n � �N,n
1 � �N�1,n �n � 0, 1, . . . , N � 1; N � 2, 3, . . . �.

[3]

This relation guarantees what we refer to as scale-invariance (or
scale-freedom) in this article. Indeed, it guarantees that, for any
value of N, the associated joint probabilities {�N,n} produce marginal
probabilities which coincide with {�N�1,n}. Assuming �10 
 �11 �
1, and taking into account that the Nth row has one more element
than the (N � 1)th row, a particular model is characterized by giving
one element for each row. We shall adopt the convention of
specifying the set {�N,0 � [0, 1], @N}. Everything follows from it.
There are many sets {�N,0} that satisfy Eq. 3. Let us illustrate with
a few simple examples:

(i) �N,0 � (2�10)N�N 
 1 (0 � �10 � 1�2; N � 1, 2, 3, . . .). We
have that all 2N states have nonzero probability if 0 � �10 � 1�2.

‡To whom correspondence may be addressed. E-mail: tsallis@santafe.edu or mgm@
santafe.edu.

§In the field of cybernetics and control theory, the form S� � 2� � 1�2� � 1 � 1 (1 � �i

pi
�) was introduced in ref. 2, and was further discussed in ref. 3. With a different prefactor,

it was rediscovered in ref. 4, and further commented in ref. 5. More historical details can
be found in refs. 6–8. This type of entropic form was rediscovered once again in 1988
(16–18) and it was postulated as the basis of a possible generalization of Boltzmann–Gibbs
statistical mechanics, nowadays known as nonextensive statistical mechanics.

¶Many entropic forms are related with Sq. A special mention is deserved by the Renyi
entropy Sq

R � (ln �i pi
q)�(1 � q) � ln[1 
 (1 � q)Sq]�(1 � q), and by the Landsberg–

Vedral–Abe–Rajagopal entropy (or just normalized Sq entropy) Sq
LVAR � Sq��i � 1

W pi
q �

[1 � (�i � 1
W pi

q) � 1]�(1 � q) � Sq�[1 � (1 � q)Sq]. The Renyi entropy was, according to
ref. 9, first introduced in ref. 10, and then in ref. 11. The Landsberg–Vedral–Abe–Rajagopal
entropy was independently introduced in ref. 12 and in ref. 13. Both Sq

R and Sq
LVAR are

monotonic functions of Sq; consequently, under identical constraints, they are all opti-
mized by the same probability distribution. A two-parameter entropic form was intro-
duced in ref. 14 which reproduces both Sq and Renyi entropy as particular cases. This
scheme has been recently enlarged elegantly in ref. 15. SBG and Sq (as well as a few other
entropic forms that we do not address here) are concave and Lesche-stable for all q � 0,
and provide a finite entropy production per unit time; Sq

R, Sq
LVAR, the Sharma–Mittal, and

the Masi entropic forms (as well as others that we do not address here) violate all of these
properties.
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The particular case �10 � 1�2 recovers the original Leibnitz triangle
itself (26) (see Fig. 2).

(ii) �N,0 � (�10)N�
(� 	 0; N � 1, 2, 3. . .). The � � 1 instance

corresponds to independent systems, i.e., �N,n � (�10)N�n (1 �
�10)n. If 0 � �10 � 1, then all 2N states have nonzero probability.
The � � 0 instance corresponds to �N,0 � �10, �N,n � 0 (n � 1, 2,
. . . , N � 1) and �N,N � 1 � �10. If 0 � �10 � 1, then only two among
the 2N states have nonzero probability, @N, namely the states
associated with �N,0 and �N,N.

We may relax the Leibnitz rule to some extent by considering
those cases where the rule is satisfied only asymptotically, i.e.,

lim
N3�

�N,n � �N,n
1

�N�1,n
� 1 �n � 0, 1, 2, . . . � . [4]

Such cases will be said to be not strictly but asymptotically scale-
invariant (or asymptotically scale-free). This is, for a variety of
reasons, the situation in which we are primarily interested. The main
reason is that what vast classes of natural and artificial systems
typically exhibit is not precisely power-laws, but behaviors which
only asymptotically become power-laws (once we have corrected, of
course, for any finite size effects). This is consistent with the fact
that within nonextensive statistical mechanics Sq is optimized by
q-exponential functions (see ref. 1 and references therein and refs.
27 and 28), which only asymptotically yield power-laws. It is
consistent also with a new central limit theorem that has been
recently conjectured (29) for specially correlated random variables.�

Let us now introduce a further concept, namely q-describability.
A model constituted by N equal and distinguishable subsystems will
be called q-describable if a value of q exists such as Sq(N) is extensive,
i.e., limN3� Sq(N)�N � �. If that special value of q equals unity, this
corresponds to the usual BG universality class. If that value of q
differs from unity, we will have nontrivial universality classes. If the
subsystems {Ai} are not necessarily equal, the system is q-
describable if an entropic index q exists such that limN3� [Sq(A1 

A2 
 . . . 
 AN)��i�1

N Sq(Ai)] � �. It should be clear that we could
equally well demand the extensivity of say S2�q [or even of SQ(q),
where Q(q) is some monotonically decreasing function of q satis-

fying Q(1) � 1] instead of that of Sq. This would of course have the
effect of having nontrivial solutions for q 
 1 whenever we had
solutions for q � 1 if the extensivity that was imposed was that of Sq.

Finally, let us point out that we might consider the subsystems of
a probabilistic system to be either strongly (or globally) correlated or
weakly (or ‘‘locally’’) correlated. The trivial case of independence, i.e.,
when the subsystems are uncorrelated, is of course a particular case
of weakly correlated. Let us make these notions more precise. A
system is weakly correlated if for every generic (different from zero
and from unity) joint probability �i1,i2, . . . ,iN

A1
A2
· · ·
AN a set of individual
probabilities {�ir

Ar} exists such that limN3� (�i1,i2, . . . ,iN
A1
A2
· · ·
AN)��r�1

N

�ir
Ar � 1. Otherwise, the system is said to be strongly correlated. The

particular case of independence corresponds to

� ir

Ar � �i1,i2, . . . ,ir�1,ir
1, . . . ,iN
� i1,i2, . . . ,iN

A1
A2
· · ·
AN �r � 1, 2, . . . , N�.

If the subsystems are equal and binary, this definition becomes as
follows: a system is weakly correlated if, for generic �N,n, a
probability p0 exists such that limN3
 �N,n�p0

N�n (1 � p0)n � 1.
Otherwise the system is said to be strongly correlated. The partic-
ular case of independence corresponds to p0 � �10. In the present
sense, weakly correlated systems could also be thought and referred
to as asymptotically uncorrelated. The interplay of scale-invariance,
q-describability, and global correlation is schematized in Fig. 3.

We have verified that all systems illustrated in i and ii above
belong to the q � 1 class (see examples in Fig. 4). We next address
q � 1 systems.

A Discrete Model That Is Not Asymptotically Scale-Invariant. Let us
consider the probabilistic structure indicated in Fig. 5, where, for
given N, only the d 
 1 first elements are different from zero, with
d � 0, 1, 2, . . . , N.

As we see, �N,n
(d) � 0 for N 	 d 
 1 and n � d 
 1, d 
 2,

�On the basis of what we have called here the Leibnitz rule, L. G. Moyano, C.T., and M.G.-M.
(44) obtained interesting preliminary numerical results based on the so called q-product
(30, 31) and its relation to the possible q-generalization of the central limit theorem. More
precisely, imposing the Leibnitz rule with �N,0 � 1 � p � 1 � q p � 1 � q . . . � q p � 1 �

[Np
q � 1 � (N � 1)]1/1 � q (with �N,0 � pN for q � 1), one verifies for p � 1�2 that, as N

increases, the distribution probability appears to approach a q-generalized Gaussian P(n,
N). The centered and rescaled distribution P(n, N)N�2 gradually becomes (say for even N)
proportional to (1 � x2)1/(1 � qexp), where x � [n � (N�2)]�(N�2). Numerically, the
exponent appears to satisfy qexp � 2 � (1�q). This relation is obtained by applying the
q 3 (2 � q) transformation after the q 3 1�q transformation (notice that this relation
can be rewritten as q � 1�(2 � qexp), which is the application of the same two transfor-
mations in the other possible order). The combinations of these two transformations
define an interesting mathematical structure which might well be at the basis of the
q-triplet conjectured in (32) and recently confirmed (33) with data received from the
spacecraft Voyager 1 in the distant heliosphere. The q-triplet observed in the solar wind is
given by qsen � � 0.6 � 0.2, qrel � 3.8 � 0.3, and qstat � 1.75 � 0.06 (33). These values
are consistent with qrel � (1�qsen) � 2 and qstat � (1�qrel) � 2, hence 1 � qsen � [1 �

qstat]�[3 � 2qstat]. Therefore, we expect only one q of the triplet to be independent. The most
precisely determined value in ref. 33 is qstat � 1.75 � 7�4. It immediately follows that qsen �

�1�2 (neatly consistent with �0.6 � 0.2) and qrel � 4 (neatly consistent with 3.8 � 0.3). There
may be some difficulties with this approach, and efforts are being made to clear up the
situation.

Fig. 2. The left numbers within the parentheses correspond to Pascal
triangle. The right numbers correspond to the Leibnitz harmonic triangle
(d � N).

Fig. 3. Scheme representing the systems that are q-describable, globally
correlated, asymptotically scale-free (ASF), and strictly scale-free (SSF). The
q � 1 region corresponds to ‘‘locally’’ correlated systems. The Leibnitz rule is
strictly satisfied for SSF, but only asymptotically satisfied for ASF. Below
(above) the continuous red line we have the ASF (non ASF) systems. The SSF
systems (below the dashed red line) constitute a subset of the ASF subset. The
red spots correspond to the four families of discrete systems illustrated in the
present paper: q � 1 non ASF (upper spot; Eqs. 12 and 14); q � 1 ASF but non
SSF (middle spot; Eqs. 17 and 24); q � 1 SSF (right bottom spot; Eq. 8); q � 1
SSF (left bottom spot; examples i and ii in the text).

Fig. 1. Most general sets of joint probabilities for N equal and distinguish-
able binary subsystems.

15378 � www.pnas.org�cgi�doi�10.1073�pnas.0503807102 Tsallis et al.



. . . , N. The total number of states is given by W(N) � 2N (@d),
but the number of states with nonzero probability is given by

Weff�N , d� � �
k�0

d N!
�N � k�!k!

, [5]

where eff stands for effective. For example, Weff(N, 0) � 1,
Weff(N, 1) � N 
 1, Weff(N, 2) � 1⁄2N(N 
 1) 
 1, Weff(N, 3) �
1⁄6N(N2 
 5) 
 1, and so on. For fixed d and N 3 � we have
that

Weff�N , d� �
Nd

d!
. [6]

Let us now make a simple choice for the nonzero probabilities,
namely equal probabilities. In other words,

�N,n
�d� � 1�2N �if N � d� ,

�N,n
�d� �

1
Weff�N , d�

� if N � d and n � d� , and [7]

�N,n
�d� � 0 �if N � d and n � d� .

See Fig. 6 for an illustration of this model.
The entropy for this model is given by

Sq�N� � lnqWeff�N , d� �
�Weff�N , d�	1�q � 1

1 � q

�
Nd�1�q�

�1 � q��d!�1�q, [8]

where we have used now Eq. 6. Consequently, Sq is extensive [i.e.,
Sq(N) � N for N 3 �] if and only if

q � 1 �
1
d

. [9]

Hence, if d � 1, 2, 3 . . . , the entropic index monotonically
approaches the BG limit from below. We can immediately verify
in Fig. 6 (and using Eq. 7) that this model violates the Leibnitz
rule for all N, including asymptotically when N 3 �. Conse-
quently, it is neither strictly nor asymptotically scale-free. How-
ever, it is q-describable (see Fig. 3).

An Asymptotically Scale-Invariant Discrete Model. Starting with the
Leibnitz harmonic triangle, we shall construct a heterogeneous
distribution �N,n

(d) . The Leibnitz triangle is given in Fig. 2 and
satisfies

pN,n � pN
1,n � pN
1,n
1 , [10]

pN,n �
1

�N � 1�

�N � n�!n!
N!

. [11]

We now define

�N,n
�d� � �pN,n � lN,n

�d� sN
�d� �n � d�

0 �n � d�
[12]

where the excess probability sN
(d) and the distribution ratio lN,n

(d)

(with 0 � 
 � 1) are defined through

sN
�d� � �

k�d
1

N

pN,k �
N � d
N � 1

[13]

Fig. 4. Sq(N) for the Leibnitz triangle [the explicit expression �N,n � 1�(N �

1) (N � n)!n!�N! has been used to calculate Sq(N)] (a) � � 1 (i.e., independent
subsystems) with �10 � 1�2 [the explicit expression �N,n � (�10)N � n (1 � �10)n

has been used to calculate Sq(N) (b) and � � 1�2 with �10 � 1�2 [the recursive
relation 3 has been used to calculated Sq(N)] (c). Only for q � 1 we have a finite
value for limN3 � Sq(N)�N; it vanishes (diverges) for q � 1 (q � 1).
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lN,n
�d� � 	

1 � 
 �n � 0�

�1 � 
�
n
�N � n�!n!

N!
�0 � n � d�


d
�N � d�!d!

N!
�n � d�

[14]

(see Fig. 7). We have verified for d � 1, 2, 3, 4 and N3 � a result
that we expect to be correct for all d � N�2, namely that 0 �
�N,n
1 �� �N,n � �N�1,n �� 1, hence

lim
N3�

�N�1,n
�d�

�N,n
�d� � �N,n
1

�d� � 1, [15]

lim
N3�

�N�1,d
�d�

�N,d
�d� � 0

� 1. [16]

In other words, the Leibnitz rule is asymptotically satisfied for the
entire probability set {�N,n}, i.e., this system has asymptotic scale
invariance. Its entropy is given by

Sq�N, d� �

1 � �
k�0

d
�N!��N � k�!k!	��N,k

�d� 	q

q � 1
, [17]

and we verify that a value of q exists such that limN3� Sq(N,d)�N
is finite. Our numerical results suggest that, for 0 � 
 � 1 (see
Fig. 8),

q � 1 �
1
d

. [18]

For a description of a strictly scale-invariant discrete model
and a continuous model, see Supporting Text and Figs. 9–17,
which are published as supporting information on the PNAS web
site.

Final Remarks
Let us now critically re-examine the physical entropy, a concept
which is intended to measure the nature and amount of our

ignorance of the state of the system. As we shall see, extensivity may
act as a guiding principle. Let us start with the simple case of an
isolated classical system with strongly chaotic nonlinear dynamics,
i.e., at least one positive Lyapunov exponent. For almost all possible
initial conditions, the system quickly visits the various admissible
parts of a coarse-grained phase space in a virtually homogeneous
manner. Then, when the system achieves thermodynamic equilib-
rium, our knowledge is as meager as possible (microcanonical
ensemble), i.e., just the Lebesgue measure W of the appropriate
(hyper) volume in phase space (continuous degrees of freedom), or
the number W of possible states (discrete degrees of freedom). The
entropy is given by SBG(N) � k ln W(N) [Boltzmann principle
(34)].** If we consider independent equal subsystems, we have
W(N) � [W(1)]N, hence SBG(N) � NSBG (1). If the N subsystems
are only locally correlated, we expect W(N) � �N (� 	 1), hence
limN3� SBG(N)�N � �, i.e., the entropy is extensive (i.e., asymptot-
ically additive).

Consider now a strongly chaotic case for which we have more
information, e.g., the set of probabilities {pi} (i � 1, 2, . . . , W)
of the states of the system. The form SBG � �k �i�1

W pi ln pi yields
SBG (A 
 B) � SBG(A) 
 SBG(B) in the case of independence
(pij

A
B � pi
Apj

B). This form, although more general than klnW
(corresponding to equal probabilities), still satisfies additivity. It
frequently happens, though, that we do not know the entire set
{pi}, but only some constraints on this set, besides the trivial one
�i�1

W pi � 1. The typical case is Gibbs’ canonical ensemble
(Hamiltonian system in longstanding contact with a thermal

**A. Einstein: ‘‘Usually W is set equal to the number of ways (complexions) in which a state,
which is incompletely defined in the sense of a molecular theory (i.e. coarse grained), can
be realized. To compute W one needs a complete theory (something like a complete
molecular-mechanical theory) of the system. For that reason it appears to be doubtful
whether Boltzmann’s principle alone, i.e. without a complete molecular-mechanical
theory (Elementary theory) has any real meaning. The equation S � k log W 
 const.
appears [therefore] without an Elementary theory—or however one wants to say
it—devoid of any meaning from a phenomenological point of view.’’ [translated by
E. G. D. Cohen (34)]. A slightly different translation also is available: [‘‘Usually W is put
equal to the number of complexions. . . . In order to calculate W, one needs a complete
(molecular-mechanical) theory of the system under consideration. Therefore it is dubious
whether the Boltzmann principle has any meaning without a complete molecular-
mechanical theory or some other theory which describes the elementary processes. S �

R�� log W 
 const. seems without content, from a phenomenological point of view,
without giving in addition such an Elementartheorie’’ (35)].

Fig. 7. Leibnitz-triangle-based 
 � 0.5 probability sets: d � 1 (Left), and d � 2 (Right).

Fig. 6. Uniform distribution model with d � 1 (Left) and d � 2 (Right).

Fig. 5. Probabilistic models with d � 1 (Left) and d � 2 (Right).

15380 � www.pnas.org�cgi�doi�10.1073�pnas.0503807102 Tsallis et al.



bath), in which case we know the mean value of the energy
(internal energy). Extremization of SBG yields, as well known, the
celebrated BG weight, i.e., pi � e��Ei, with � � 1�kT and {Ei}
being the set of possible energies. This distribution recovers the
microcanonical case (equal probabilities) for T 3 �.

Let us now address more subtle physical systems (still within
the class associated with strong chaos), namely those in which the
particles are indistinguishable (bosons, fermions). This new

constraint leads to a substantial modification of the description
of the states of the system, and the entropy form has to be
consistently modified, as shown in any textbook. These expres-
sions may be seen as further generalizations of SBG, and the
extremizing probabilities constitute, at the level of the one-particle
states, generalizations of the just mentioned BG weight, recov-
ered asymptotically at high temperatures. It is remarkable that,
through these successive generalizations (and even more, since
correlations due to local interactions might exist in addition to
those connected with quantum statistics), the entropy remains
extensive. Another subtle case is that of thermodynamic critical
points, where correlations at all scales exist. There we can still
refer to SBG, but it exhibits singular behavior.††

Finally, we address the completely different class of systems
for which the condition of independence is severely violated
(typically because the system is only weakly chaotic, i.e., its
sensitivity to the initial conditions grows slowly with time, say as
a power-law, with the maximal Lyapunov exponent vanishing). In
such systems, long range correlations typically exist that un-
avoidably point toward generalizing the entropic functional,
essentially because the effective number of visited states grows
with N as something like a power law instead of exponentially.
We exhibited here such examples for which (either exact or
asymptotic) scale-invariant correlations are present. There the
entropy Sq for a special value of q � 1 is extensive, whereas SBG
is not.

Weak departures from independence make SBG lose strict
additivity, but not extensivity. Something quite analogous is
expected to occur for scale-invariance in the case of Sq for q �
1. Amusingly enough, we have shown (see also refs. 29 and 38)
that the ‘‘nonextensive’’ entropy Sq—indeed nonextensive for
independent subsystems—acquires extensivity in the presence of
suitable asymptotically scale-invariant correlations. Thus argu-
ments presented in the literature that involve Sq (with q � 1)
concomitantly with the assumption of independence should be
revisited. In contrast, those arguments based on extremizing Sq,
without reference to the composition of probabilities, remain
unaffected. Although reference to ‘‘nonextensive statistical me-
chanics’’ still makes sense, say for long-range interactions, we see
that the usual generic labeling of the entropy Sq for q � 1 as
‘‘nonextensive entropy’’ can be misleading.

The asymptotic scale invariance on which we focus appears to
be connected with the asymptotically scale-free occupation of
phase space that has been conjectured (1) to be dynamically
generated by the complex systems addressed by nonextensive
statistical mechanics (see also refs. 39 and 40). Extensivity—
together with concavity, Lesche-stability (41–43), and finiteness of
the entropy production per unit time—increases the suitability of
the entropy Sq for linking, with no major changes, statistical
mechanics to thermodynamics.

Last but not least, the probability structure of our discrete
cases is, interestingly enough, intimately related to both the
Pascal and the Leibnitz triangles.

††This is due, as well known, to the fractal structure of the correlation clusters existing at
critical points. An instructive description in nonextensive terms of such special situations
has been recently advanced in refs. 36 and 37.
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Fig. 8. Illustrations of the extensivity of Sq for the q � 1 ASF model (with 
 �
0.5): (a) d � 1; (b) d � 2; and (c) d � 3. Notice that the minimal value of N
equals d � 1. limN3 � Sq(N)�N vanishes (diverges) if q � 1 � 1�d (q � 1 �

1�d), whereas it is finite for q � 1 � 1�d.
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